312 research outputs found

    Donsker-Varadhan asymptotics for degenerate jump Markov processes

    Full text link
    We consider a class of continuous time Markov chains on a compact metric space that admit an invariant measure strictly positive on open sets together with absorbing states. We prove the joint large deviation principle for the empirical measure and flow. Due to the lack of uniform ergodicity, the zero level set of the rate function is not a singleton. As corollaries, we obtain the Donsker-Varadhan rate function for the empirical measure and a variational expression of the rate function for the empirical flow

    Transport in the sine-Gordon field theory: from generalized hydrodynamics to semiclassics

    Get PDF
    The semiclassical approach introduced by Sachdev and collaborators proved to be extremely successful in the study of quantum quenches in massive field theories, both in homogeneous and inhomogeneous settings. While conceptually very simple, this method allows one to obtain analytic predictions for several observables when the density of excitations produced by the quench is small. At the same time, a novel generalized hydrodynamic (GHD) approach, which captures exactly many asymptotic features of the integrable dynamics, has recently been introduced. Interestingly, also this theory has a natural interpretation in terms of semiclassical particles and it is then natural to compare the two approaches. This is the objective of this work: we carry out a systematic comparison between the two methods in the prototypical example of the sine-Gordon field theory. In particular, we study the "bipartitioning protocol" where the two halves of a system initially prepared at different temperatures are joined together and then left to evolve unitarily with the same Hamiltonian. We identify two different limits in which the semiclassical predictions are analytically recovered from GHD: a particular non-relativistic limit and the low temperature regime. Interestingly, the transport of topological charge becomes sub-ballistic in these cases. Away from these limits we find that the semiclassical predictions are only approximate and, in contrast to the latter, the transport is always ballistic. This statement seems to hold true even for the so-called "hybrid" semiclassical approach, where finite time DMRG simulations are used to describe the evolution in the internal space.Comment: 30 pages, 6 figure

    Large deviations of the empirical flow for continuous time Markov chains

    Full text link
    We consider a continuous time Markov chain on a countable state space and prove a joint large deviation principle for the empirical measure and the empirical flow, which accounts for the total number of jumps between pairs of states. We give a direct proof using tilting and an indirect one by contraction from the empirical process.Comment: Minor revision, to appear on Annales de l'Institut Henri Poincare (B) Probability and Statistic

    A gradient flow approach to linear Boltzmann equations

    Full text link
    We introduce a gradient flow formulation of linear Boltzmann equations. Under a diffusive scaling we derive a diffusion equation by using the machinery of gradient flows

    Large deviation principles for nongradient weakly asymmetric stochastic lattice gases

    Full text link
    We consider a lattice gas on the discrete d-dimensional torus (Z/NZ)d(\mathbb{Z}/N\mathbb{Z})^d with a generic translation invariant, finite range interaction satisfying a uniform strong mixing condition. The lattice gas performs a Kawasaki dynamics in the presence of a weak external field E/N. We show that, under diffusive rescaling, the hydrodynamic behavior of the lattice gas is described by a nonlinear driven diffusion equation. We then prove the associated dynamical large deviation principle. Under suitable assumptions on the external field (e.g., E constant), we finally analyze the variational problem defining the quasi-potential and characterize the optimal exit trajectory. From these results we deduce the asymptotic behavior of the stationary measures of the stochastic lattice gas, which are not explicitly known. In particular, when the external field E is constant, we prove a stationary large deviation principle for the empirical density and show that the rate function does not depend on E.Comment: Published in at http://dx.doi.org/10.1214/11-AAP805 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Large deviations for a stochastic model of heat flow

    Full text link
    We investigate a one dimensional chain of 2N2N harmonic oscillators in which neighboring sites have their energies redistributed randomly. The sites −N-N and NN are in contact with thermal reservoirs at different temperature τ−\tau_- and τ+\tau_+. Kipnis, Marchioro, and Presutti \cite{KMP} proved that this model satisfies {}Fourier's law and that in the hydrodynamical scaling limit, when N→∞N \to \infty, the stationary state has a linear energy density profile θˉ(u)\bar \theta(u), u∈[−1,1]u \in [-1,1]. We derive the large deviation function S(θ(u))S(\theta(u)) for the probability of finding, in the stationary state, a profile θ(u)\theta(u) different from θˉ(u)\bar \theta(u). The function S(θ)S(\theta) has striking similarities to, but also large differences from, the corresponding one of the symmetric exclusion process. Like the latter it is nonlocal and satisfies a variational equation. Unlike the latter it is not convex and the Gaussian normal fluctuations are enhanced rather than suppressed compared to the local equilibrium state. We also briefly discuss more general model and find the features common in these two and other models whose S(θ)S(\theta) is known.Comment: 28 pages, 0 figure
    • …
    corecore